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Abstract

Genetically modified mice carrying engrafted human tissues provide useful models to study human cell biology in
physiologically relevant contexts. However, there remain several obstacles limiting the compatibility of human cells within
their mouse hosts. Among these is inadequate cross-reactvitiy between certain mouse cytokines and human cellular
receptors, depriving the graft of important survival and growth signals. To circumvent this problem, we utilized a lentivirus-
based delivery system to express physiologically relevant levels of human interleukin-7 (hIL-7) in Rag2-/-cc-/- mice following
a single intravenous injection. hIL-7 promoted homeostatic proliferation of both adoptively transferred and endogenously
generated T-cells in Rag2-/-cc-/- Human Immune System (HIS) mice. Interestingly, we found that hIL-7 increased T
lymphocyte numbers in the spleens of HIV infected HIS mice without affecting viral load. Taken together, our study unveils a
versatile approach to deliver human cytokines to HIS mice, to both improve engraftment and determine the impact of
cytokines on human diseases.
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Introduction

The development of effective therapies against many of the most

widespread human diseases is hampered by a lack of adequate

model systems. Mice provide valuable in vivo models for basic

research but are generally inadequate for the study of human-

specific pathogens that infect cells of the human immune system.

One promising solution to this dilemma has been the development

of human-mouse chimeras that maintain the relatively low cost of

small animal models while allowing for the study of human

immune cells in a physiological setting. Human-mouse chimeras

have been under development for close to 40 years, and significant

progress has been made during this period[1]. However, the most

successful of these models typically requires the implantation of

multiple human embryonic tissues and are therefore labor

intensive and expensive to create[2,3].

Recently, two studies demonstrated that CD34+ human

progenitor cells isolated from either umbilical cord blood (CB)

or fetal liver could be injected into irradiated Rag2-/-cc-/-

newborn mice resulting in the development of a human immune

system (HIS)[4,5]. Upon reaching adulthood, these mice develop

both B and T lymphocytes that take residence in peripheral

lymphoid organs including the spleen and lymph nodes. Similar

engraftment has also been observed upon injecting CD34+ CB

cells into NOD/scid cc-/- (NSG) recipient mice[6,7]. These

models demonstrate a limited, yet promising, functional response

to immunization with tetanus toxoid or chicken ovalbumin

resulting in some production of antigen specific antibodies by

the graft[5,6]. Further work has demonstrated that these models

are susceptible to infection by human immunodeficiency virus

(HIV), and can therefore be used for the study of this human

pathogen[8,9]. Despite this progress, HIS mice have significant

limitations with respect to longevity of engraftment, production of

myeloid cell populations, and the consistency of immune cell

function in experimental replicates within a group[10]. Impor-

tantly, T cell populations in this model are slow to appear and are

greatly outnumbered by B lymphocytes until the mice are greater

than 6 months of age. These limitations necessitate the

improvement of the HIS mouse model if it is to become a

practical means of studying human immune responses or the

pathology of human diseases.

One approach towards overcoming these deficiencies is to

supplement human-mouse chimeras with cytokines to enhance

engraftment and immune function. Previous studies have

demonstrated improvements in human-mouse chimeras following

cytokine therapy, typically promoting increased engraftment of
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certain cell types[7,11,12]. These studies have used both direct

intravenous (iv) injection of recombinant cytokines and the

creation of transgenic mouse strains to express specific factors.

Both of these approaches have distinct disadvantages. iv injection

leads to fluctuating levels of the delivered cytokine and is labor

intensive. The transgenic approach is time consuming, especially

when multiple strains are to be tested. We have developed an

alternative cytokine delivery approach that can cheaply, easily,

reliably and stably deliver precise doses of human cytokines to

mice to improve the efficacy of human cytokine therapy, and

provide greater versatility.

Human Interleukin 7 (hIL-7) is a hematopoietic growth factor

implicated in the development of thymic T cells as well as

lymphoid homeostasis and survival in the periphery[13,14,15,16].

Upon binding to its cognate receptor IL-7Ra/CD127, signaling

proceeds through the JAK-STAT pathway leading to activation of

STAT5[17]. IL-7Ra signaling also regulates different BCL2

family members that are important regulators of cell survival[18].

Due to its profound impact on the homeostatic levels of T cells and

lack of toxicity in vivo, IL-7 therapy is currently being used in

clinical trials as a means to bolster T cell levels in lymphopenic

individuals[19,20,21]. Because IL-7 is normally produced by

stromal tissue and not immune cells[22], HIS mice are deficient in

the human IL-7 signal. These features give exogenous delivery of

hIL-7 the potential to improve the HIS mouse model.

In the present study, we have established a lentiviral vector-

based platform for delivery of human cytokines to HIS mice with

the long-term goal of improving human cell engraftment, diversity

and functional capacity in this model. We have initially focused on

delivering hIL-7 and found that super-physiological levels of hIL-7

could be produced and maintained for up to 6 months following a

single injection of lentiviral vector encoding this cytokine.

Adoptive transfer of human T lymphocytes into Rag2-/-cc-/-

mice after they had received the hIL-7 expressing lentivector led to

their homeostatic proliferation and expansion to higher levels

compared to control conditions. Similar increases in T cell

numbers were also observed in HIS mice that received the hIL-7

lentivector, and this correlated with higher expression of BCL2.

Finally, an increase in T cell numbers in HIS mice receiving the

IL-7 expressing lentiviral vector persisted in mice challenged with

HIV, suggesting that IL-7 could be therapeutically beneficial in

preserving CD4+ T cells during HIV infection.

Results

Increased survival of HIS mouse T cells following human
IL-7 treatment in vitro

We have established a HIS mouse model as described by Manz

and coworkers[5], finding that injection of purified CD34+ CB

cells into irradiated Rag2-/-cc-/- newborns can produce both B

and T lymphocytes as these mice mature. B cells consistently

dominate this model over the first 6 months, while CD3+ T

lymphocytes are found at relatively low levels in the peripheral

blood and spleens of these mice despite good numbers of

developing T cells in the thymus (Figure 1a). Based upon these

observations, we hypothesized that important human T cell

growth factors might be missing from this system. Among such

factors, IL-7 has been shown in both mice and humans to promote

T cell survival and homeostatic proliferation[13,14,15,16]. Fur-

thermore, because this factor is produced by non-hematopoietic

stromal cells it is not supplied by the engrafted human immune

cells[22].

We first tested whether T cells that develop in HIS mice express

the receptor for IL-7 by flow cytometry and observed expression

levels similar to those found on normal human T cells in the

peripheral blood (Figure 1b). Next, we treated both splenocytes

(16106 RBC-depleted) and lymph node cells (56105) from HIS

mice with increasing amounts of recombinant hIL-7 (replenished

on day 4) and observed a dose dependent increase in the survival

of both CD4+ and CD8+ T cells in vitro by day 7 based on 7-AAD

staining (Figure 1c). This demonstrates that human T cells

maturing in HIS mice are responsive to hIL-7.

Systemic delivery of hIL-7 to Rag2-/-cc-/- mice using a
lentiviral vector

Lentiviral vectors have been used for long term systemic

expression of genes in mice[23], and we therefore tested whether

hIL-7 could be delivered to immunodeficient mice using such an

approach. To this end we cloned the hIL-7 or luciferase (luc)

genes into a lentiviral construct (Figure 2a), produced virus, and

injected different amounts of hIL-7 or luc expressing virus

intravenously into Rag2-/-cc-/- mice. Imaging of mice receiving

the luc expressing lentivirus showed strong luciferase signal

localized primarily to liver, bone marrow and spleen (Figure 2b)

that was not present prior to transduction (Figure S1). In the

serum we detected high levels of hIL-7 by ELISA, which were

sustained for the entire six-month period of analysis (Figure 2c).

Furthermore, the levels of hIL-7 were dependent upon the

amount of lentivector injected for the first 2 months, indicating

that the expression levels can be controlled. These data

demonstrate that hIL-7 can be delivered to the immunodeficient

mouse strains used as hosts for human immune system grafts and

that expression is stable long-term. Additionally, intravenous

administration of lentivirus causes infection of tissues known to be

enriched in human immune cells, including the spleen and bone

marrow[5], or which function as an endogenous source of IL-7,

such as the liver[22].

Lentiviral vector delivery of hIL-7 to Rag2-/-cc-/- mice
promotes homeostatic proliferation of adoptively
transferred human T cells

Having successfully produced stable levels of hIL-7 in Rag2-/-

cc-/- mice following lentiviral vector injection, we next

investigated whether hIL-7 produced by this method could

impact human T cell survival as had been previously reported.

Adult Rag2-/-cc-/- mice were injected with two different doses of

the hIL-7 lentivector or control luc vector and hIL-7 expression

was assayed in the mouse serum two weeks later. At this time

point, we observed dose dependent levels of hIL-7 in mice

receiving the hIL-7 producing lentiviral vector and no detectable

hIL-7 in control mice (Figure 3a). Human peripheral blood

mononuclear cells (PBMCs) were CFSE labeled and injected

intravenously into these mice and allowed to expand for 7 days.

Spleens were removed and T cell populations were quantified by

flow cytometry. We observed a dose dependent increase in

human CD3+ T cell populations in hIL-7 expressing mice as

compared to mice expressing luciferase, and found that this

increase occurred in both CD4+ and CD8+ T cell populations

(Figure 3b and Figure S2). Because these cells were labeled with

CFSE prior to injection we analyzed the intensity of dye labeling

to determine the extent of their proliferation. Consistent with

hIL-7 driving homeostatic proliferation of T cells, we saw a dose

dependent decrease in CFSE intensity that inversely correlated

with hIL-7 expression (Figures 3c and 3d). These data

demonstrate that delivery of hIL-7 by a lentiviral vector can

increase the number of T cells in Rag2-/-c-/- mice by enhancing

proliferation.

Lentiviral Delivery of hIL-7
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Lentiviral delivery of human IL-7 to HIS mice expands
human T cell populations in the peripheral blood

Our adoptive transfer experiments indicated that hIL-7 could

improve human T cell populations in chimeric mice, and

suggested that this cytokine acts on the mature T cell populations

found in PBMCs. As described above, CD34+ CB derived HIS

mice have low levels of mature human T lymphocytes in their

periphery. Thus, we tested the impact of lentivirus delivered hIL-7

on T cell numbers in HIS mice. A cohort of HIS mice was

screened for human cell engraftment at 6 weeks of age (Figure 4a).

Upon reaching 8 weeks of age, HIS mice were given high and low

doses of the hIL-7 or luc control lentivectors, which again led to

dose dependent expression of hIL-7 (Figure 4b). Of note, we did

not detect any hIL-7 in engrafted HIS mice not receiving the hIL-

7 expressing vector, demonstrating the inability of the graft to

provide this cytokine. Peripheral blood B and T cell numbers were

assessed periodically until 18 weeks of age (Figure 4c). Mice

expressing hIL-7 showed a significant increase in the ratio of

peripheral blood T cells to B cells when compared to luciferase

expressing controls by 18 weeks of age (Figure S3). Interestingly,

mice receiving the higher dose of lentivirus developed high levels

of T-cells significantly faster than the low dose group (evident by

Figure 1. HIS mouse T cells express the IL-7Ra and exhibit increased viability in response to hIL-7 in vitro. a. Human immune cell
populations were analyzed in lymphoid tissues from 20 week old HIS mice by flow cytometry to determine the extent of T and B cell engraftment.
b. Peripheral blood from HIS mice or normal human donors was stained with either fluorophore-conjugated isotype control (clear histogram) or anti-
hIL-7Ra antibody (grey histograms) and analyzed by flow cytometry. c. HIS mouse splenocytes (16106) or lymph nodes cells (56105) were cultured in
increasing amounts of hIL-7 for 7 days. Cells were stained with antibodies against CD3, CD4 or CD8 as well as 7-AAD and analyzed by flow cytometry
to quantify the number of live cells of each subtype.
doi:10.1371/journal.pone.0012009.g001

Lentiviral Delivery of hIL-7
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16 weeks of age) and reached a much higher level than the control

and low dose groups by week 18. Importantly, blood from 18 week

old hIL-7 expressing mice more closely resembled the T cell – B

cell ratio observed in normal human blood than that of control

mice (Figure 4d). Finally, we used flow cytometry to determine

which T cell subsets were expanded by hIL-7 (Figure 4e). While

hIL-7 led to marginally elevated human cell engraftment overall as

compared to control mice, the relative proportions of CD4, CD8,

naı̈ve and memory phenotype T cells in the peripheral blood of

hIL-7 expressing mice was largely unchanged by hIL-7, suggesting

that all T cell populations were expanded. Of note, the high but

not low dose group of hIL-7 mice had marginally elevated effecter

Figure 2. Delivery of hIL-7 to Rag2-/-cc-/- using a lentiviral vector. Schematic of the lentiviral vector used to deliver hIL-7 or luciferase.
b. Expression of luciferase was assayed using Xenogen imaging two months after intravenous injection of Rag2-/-cc-/- mice with 26108 infectious
units of luciferase expressing lentiviral vector. Localized expression from spleen (SP), bone marrow (BM), and liver (LV) are illustrated. c. Expression of
hIL-7 was assayed for six months in the serum of Rag2-/-cc-/- mice following a single intravenous injection of either 16108 or 46108 infectious units
of IL-7 expressing lentiviral vectors. Four mice were used per group, and the average and SEM are shown.
doi:10.1371/journal.pone.0012009.g002

Lentiviral Delivery of hIL-7
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T cell populations in the peripheral blood compared to control

mice. Thus, hIL-7 can improve the overall T cell levels in the

peripheral blood of HIS mice.

IL-7 expands splenic lymphoid follicles and increases
both T cell numbers and BCL2 expression

We next examined whether hIL-7 impacted lymphoid tissues in

HIS mice. Upon dissection, we observed modest splenomegaly in

hIL-7 expressing mice compared to controls (Figure 5a), a finding

that has been observed in people undergoing hIL-7 treatment in a

clinical trial[21]. Hematoxylin and eosin staining on fixed spleen

sections on demonstrated, on average, larger lymphoid follicles in

hIL-7 treated mice (Figure 5b). Upon analyzing splenocytes by

flow cytometry we observed a marked increase in the percentage

of human T cells in the spleens and mesenteric lymph nodes of

hIL-7 expressing mice but found that the CD4/CD8 ratio was not

perturbed by IL-7 (Figure 5c). The absolute numbers of different

cell types in the spleen were also determined and T cells were

found to be elevated in IL-7 vs. control spleens (Figure 5d).

Immunohistochemistry showed increases in the number of CD3+
T cells in splenic sections of hIL-7 expressing HIS mice as

compared to controls, yet roughly equal densities of CD20+ B cells

Figure 3. Lentiviral vector delivery of hIL-7 promotes homeostatic proliferation of adoptively transferred human T cells in Rag2-/-
cc-/- mice. a. Serum concentrations of hIL-7 detected by ELISA three weeks after intravenous administration of 96107 or 1.76108 IU of lentivirus
expressing either luciferase or hIL-7. b. The percentage of CD3+, CD4+ or CD8+ T cells of live splenocytes following one week post transfer of 26107

CFSE labeled human PBMCs into Rag2-/-cc-/- mice from A. c. Average mean fluorescence intensity (MFI) of CFSE measured by flow cytometry in T-cell
subsets quantified in B. Four mice were used per group, and the average and SEM are shown. d. Representative histograms showing CFSE loss by
CD3+, CD4+ or CD8+ adoptively transferred T cells from mice receiving the control vector, low dose hIL-7 or high dose hIL-7.
doi:10.1371/journal.pone.0012009.g003

Lentiviral Delivery of hIL-7
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Figure 4. Lentiviral vector delivery of hIL-7 to HIS mice improves T cell levels in the peripheral blood. a. Total human CD45+ cell
engraftment in peripheral blood of cohort of mice used in this experiment prior to separation into treatment groups. b. Serum concentrations of hIL-
7 detected by ELISA at 18 weeks of age in mice receiving intravenous low (16108 IU) or high (56108 IU) dose lentivirus expressing either luciferase or
hIL-7. c. HIS mice were injected with 16108 (low dose) or 56108 (high dose) hIL-7 or luciferase expressing lentiviral vectors at 8 weeks of age
(indicated by black arrow). The percentages of CD3+ and CD19+ peripheral blood cells (as a percentage of total human CD45+ cells) were determined
from 8 to 18 weeks of age by flow cytometry. 5–7 mice were used per group, and the average and SEM are shown.d. Proportion of CD3 and CD19
expressing cells in peripheral blood of a representative luciferase or hIL-7 expressing HIS mice at 18 weeks of age as compared to a normal human

Lentiviral Delivery of hIL-7
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in the two groups (Figure 5e, left). Staining for the pro-survival

factor BCL2 revealed elevated expression in spleens from hIL-7

expressing HIS mice, and overlapped with CD3+ T cells

(Figure 5e, right) indicating a mechanism by which T-cells are

expanded in the periphery of HIS mice expressing hIL-7. To

assess the impact of improved T-cell engraftment on the humoral

immune system, we assayed the serum levels of IgM and IgG and

found an increase in total IgM, but little difference in total IgG

concentrations in mice expressing hIL-7 (Figure 5f).

IL-7 maintains high T cell levels in the spleen during HIV
infection without boosting viral load

An important feature of HIS mice is their ability to be infected by

human-specific pathogens such as HIV, which depletes CD4+ T

cells following infection[8]. Because IL-7 can increase the survival of

T cells, we tested whether CD4+ T cells in HIS mice would be

rescued by IL-7 following infection by HIV. To this end, we

challenged hIL-7 expressing HIS mice with the CCR5-tropic HIV

strain JRCSF at 18 weeks of age. Mice were bled and the fraction of

CD4+ T cells (as a percentage of total CD3+ cells) in the peripheral

blood was determined by flow cytometry. We observed a drop in

CD4+ cells at both 3 and 6 weeks post-infection in both groups

compared to uninfected animals (Figure 6a). Interestingly, quanti-

tation of HIV genome copies in mouse serum six weeks post-

infection by Amplicor revealed equivalent infection levels in HIS

mice treated with either hIL-7 or control lentivirus (Figure 6b).

Spleens were analyzed at six weeks and the number of total human

cells (CD45+), T cells (CD3+, CD4+ and CD8+) and B cells

(CD19+) in the spleens of infected mice were determined by FACS.

Despite having equivalent systemic infection levels, hIL-7 treated

mice exhibited elevated numbers of human T cells in their spleens

compared to control mice (Figure 6c). Both groups had equivalent

numbers of human splenic B cells. Fixed splenic sections were also

stained for p24, and the number of HIV infected cells in a given area

of lymphoid follicle was determined (Figure 6d). Like the blood,

HIV infection of the spleen was similar between the groups. These

data suggest that IL-7 can increase overall T lymphocyte numbers

during HIV infection without affecting viral load.

Discussion

The present study demonstrates that lentiviral vectors can be

used to express cytokine genes in HIS mice following a single

intravenous injection. This approach enabled hIL-7 to be

expressed at consistent levels long-term, and improved human T

lymphocyte numbers in the HIS model. Increases in T cell

numbers occurred in all compartments analyzed, consistent with

IL-7 functioning as a mediator of homeostatic proliferation.

Additionally, the direct effects induced by IL-7 were entirely

confined to the human graft, because the common c chain

required for IL-7R signaling is deficient in the host mouse strain.

Our approach resulted in hIL-7 serum concentrations higher than

those found in healthy human adults, which ranges from 0.27 to

8.7 pg/ml (average 2.2 pg/ml), yet within the range of some HIV-

positive lymphopenic individuals (which can be up to 70 pg/ml)[24].

Our experiments found that the impact of hIL-7 on human T cells

was reduced in animals expressing lower concentrations of cytokine

(10–20 pg/ml vs. 100 pg/ml hIL-7). This suggests that the HIS

mouse model may require super-physiological levels of certain

cytokines to induce meaningful changes in cellular compartments.

The reasons for this are presently unclear, but it may reflect

insufficient niche specific expression of hIL-7, which may be higher

than systemic levels. Therefore, our expression platform might not

be producing enough hIL-7 to reach such locations in sufficient

quantities until we boost the overall systemic levels to super-

physiological concentrations. Alternatively, other human cytokines

not present in the HIS model might sensitize target cells to lower

amounts of IL-7, but this also remains to be determined. It is also

plausible that insufficient niche specific hIL-7 levels are the reason

why a recent study did not observe differences in HIS mouse

peripheral T cell levels following direct injection of recombinant hIL-

7[25]. In fact, an earlier approach in which an Fc-IL-7 fusion protein

was delivered via weekly injections led to increased T cell: B cell

ratios in the spleens of humanized NOD-scid cc-/- mice[7]. This

approach stabilized hIL-7 serum levels, resulting in a biological

impact similar to that observed following constant hIL-7 production

by our expression system in humanized Rag2-/-cc-/- mice.

We observed a direct correlation between vector dose and

cytokine expression indicating that lentiviral based cytokine delivery

can be easily adjusted to deliver a desired dose of cytokine.

Transgene expression was also highest in the liver, bone marrow

and spleen, consistent with an earlier study that used VSVG-

pseudotyped lentivirus to deliver human factor IX to non-chimeric

SCID mice[23]. This infection pattern exhibits significant overlap

with the tissues and organs engrafted by the human immune cells

such as spleen and bone marrow. Liver tissue was also efficiently

targeted, mimicking one of the natural sites of IL-7 production in

vivo. Given this overlap in infection and human cell engraftment

patterns, it may also be possible to deliver molecules in addition to

cytokines, such as transmembrane receptors, that require direct cell-

to-cell contact to mediate their effects. Furthermore, because the

technology to target lentiviral vectors to specific cell types in vivo is

making substantial progress[26], delivering molecules to specific

tissues in vivo may soon be feasible in the HIS model.

Recently, clinical trials have shown that hIL-7 can increase T cell

numbers in people, indicating a promising therapeutic role for this

cytokine[19,20,21]. Two of these studies examined HIV infected

patients undergoing HAART therapy, resulting in low viral loads in

these individuals and making it hard to assess the impact IL-7 on

HIV replication. Our HIS mouse experiments suggest that IL-7 can

improve T cell levels even in the absence of antiretroviral drugs, and

do so without boosting HIV titers. This finding highlights the utility

of HIS mice as models for human-specific disease.

IL-7 has been shown to function as an adjuvant in mice[27].

However, despite increased T cell numbers and lymphoid follicle

size in the spleen, hIL-7 expressing HIS mice had only limited

immune function similar to controls. Ovalbumin immunization

resulted in modest antigen specific IgM responses and virtually no

IgG production in both control as well as hIL-7 expressing HIS

mice (Figure S4a). Additionally, JR-CSF infected hIL-7 or control

mice did not develop any appreciable antibody responses to virus

antigens as determined by western blotting (Figure S4b), further

supporting our assessment that IL-7 expression alone was

insufficient to restore normal immune function. Despite its

inability to improve antigen specific immune responses, hIL-7 is

likely an important piece of the puzzle given that T cells play a

central role in immune responses to antigens. Consistent with this,

we observed increased total serum IgM levels in hIL-7 expressing

donor. e. For each mouse group, human cell engraftment was determined by calculating the percentage of human CD45+ cells of total CD45+ cells.
The percentage of CD3+ CD4+ and CD3+CD8+ T cells in the peripheral blood was also determined. CD3+ naı̈ve (CD27+CD45RA+), effector
(CD27+CD45RA-) and memory (CD27-CD45RA-) phenotype T cells were quantified by flow cytometry.
doi:10.1371/journal.pone.0012009.g004

Lentiviral Delivery of hIL-7
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mice, suggesting that improved T-cell survival by hIL-7 resulted in

increased B-cell output. Beyond immune function, IL-7 did not

improve the mouse to mouse, or donor to donor, variability

observed in the HIS model, suggesting that additional cytokines

known to act on HSCs are likely necessary to impact overall

human cell engraftment. Importantly, the modular nature of our

system will permit the delivery of multiple cytokines at one time,

and therefore future studies will investigate the effect of various

cytokine combinations with the goal of enhancing human immune

cell development and function in the HIS model.

Figure 5. Lentiviral vector delivery of hIL-7 improves T cell levels in the spleens and lymph nodes of HIS mice, and increases BCL2
expression. Spleens were removed from hIL-7 (low dose group) or luciferase expressing mice and weighed. b. Splenic sections were H&E stained
(scale bar = 1 mm). c. Spleens and lymph nodes were processed into single cell suspensions and flow cytometry was used to analyze the percentage
of human CD3+ versus CD19+ cells in the different groups. CD3+ cells were analyzed to quantify CD4+ and CD8+ subsets. d. Absolute cell numbers
for the indicated lineages were determined using splenocytes from hIL-7 expressing or control mice. e. Serial splenic sections were stained with
antibodies against human CD3 (scale bar = 100 mm) or CD20 (scale bar = 100 mm), and another set with CD3 (scale bar = 100 mm) and BCL2 (scale
bar = 100 mm). f. Serum from both low and high dose hIL-7 expressing mice or luciferase controls was assayed to determine the concentrations of
total IgM or total IgG.
doi:10.1371/journal.pone.0012009.g005

Lentiviral Delivery of hIL-7
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Materials and Methods

Ethics Statement
All animal experiments were approved by the Institutional Animal

Care and Use Committee (IACUC) and conducted in agreement with

NIH policy. Animal experiments were conducted under California

Institute of Technology IACUC protocols 1536-06T and 1547-08G.

Mice
Rag2-/-cc-/- mice on a Balb/c genetic background were used for

all mouse experiments. For adoptive transfer experiments, mice were

injected with 26107 PBMCs (AllCells) that were first labeled with

CFSE. HIS mice were created as described[5]. In brief, 1.56105

highly purified CD34+ CB stem cells (AllCells) were injected into the

livers of irradiated (400 Rads) newborn pups within 24 hours of birth.

Human cell engraftment was routinely determined by analyzing the

ratio of human to mouse CD45+ cells in the peripheral blood at 6–8

weeks of age. Each experiment was performed using mice created

from the same CD34+ cell donor population.

Cell culture
T lymphocytes harvested from the spleen and lymph nodes of

HIS mice were cultured in RPMI medium with 10% FBS and 1%

Penicillin-Streptomycin. Cells were incubated in a humidified

incubator (5% CO2) at 37 C. Recombinant hIL-7 (Ebiosciences)

was added to the medium on day 0 and replenished on day 3 of

Figure 6. Higher CD3+ Splenic T cell numbers in HIV infected HIS mice expressing hIL-7. IL-7 or luciferase expressing HIS mice were
infected with the HIV strain JR-CSF and peripheral blood was assayed by flow cytometry to determine the percentage of CD4+ of CD3+ human T cells.
b. The HIV genome copy number in the peripheral blood plasma from the two groups of mice was quantified following 6 weeks of infection. c. The
human CD45+, CD3+, CD4+, CD8+ and CD19+ splenocyte numbers were quantified by FACS 6 weeks after infection by HIV. d. Fixed Spleen sections
from HIV infected luc and hIL-7 mice were stained for p24 (left, scale bar = 100 mm). The number of p24 positive cells in a given area (1 mm2) of a
lymphoid follicle was determined (right). Data represent 8–9 mice per group, and the average and SEM are shown.
doi:10.1371/journal.pone.0012009.g006
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culture, and cell viability was determined by staining for specific T

cell surface markers (CD3, CD4 and CD8) and positivity for 7-

AAD (eBioscience and Becton Dickinson).

Lentiviral production and infection of HIS mice
Sequences encoding hIL-7 or luciferase were cloned into the

pHAGE vector system. Experiments were performed using either

pHAGE1 or pHAGE6 vector backbones containing identical

transgenes driven from an internal CMV promoter for high and

low doses respectively. Both vectors are third-generation, self-

inactivating lentiviral vector backbones based on pHRST [28,29].

Briefly, the StuI fragment of pHRST containing a complete viral

genome was ligated into the pUC19 backbone to remove

exogenous flanking genomic sequences. PCR-cloning was em-

ployed to introduce restriction sites flanking the promoter and

transgene to facilitate subsequent cloning. Further modifications

were made to pHAGE6 to remove extraneous viral sequences with

no effect on virus function (A.B., to be published elsewhere).

Lentivirus was produced by transient transfection of 293T cells

with virus backbone and expression plasmids carrying helper

proteins. Briefly, 306106 293T cells were transfected with 40 ug of

DNA using TransIT-293 reagent (Mirus Bio, Madison WI)

according to manufacturer’s instructions. Viral supernatants were

collected beginning at 48 hours post-transfection and every

12 hours following for a total of 4 collections. Supernatants were

subjected to ultracentrifugation in a Beckman SW28 rotor at

16,500rpm for 1.5 hours at 4C and pelleted virus was resuspended

in growth media. Viruses were titered by standard means using

flow cytometry of infected 293T cells to determine infectious units

per mL. HIS mice were injected retro-orbitally with 200 uL of

PBS containing the specified dose of virus per mouse. Following

viral infection and integration, transcripts were initiated from an

internal CMV promoter, carried the ZsGreen fluorescent protein

downstream of an IRES element and contained a WPRE.

Flow Cytometry
Blood was obtained via retro-orbital bleeding of anesthetized

mice, or spleens and lymph nodes were removed from euthanized

animals, homogenized, and passed through a 40 uM filter to

create a single cell suspension. RBCs were lysed using RBC lysis

solution, Fc receptors blocked using anti-mouse CD16/32

antibodies (eBioscience), and single cell suspensions were stained

with specific antibodies using FACS buffer (1xPBS, 2% FBS, 0.1%

BSA and 0.1% Sodium Azide). The following antibodies were

used: anti-human CD3, CD4, CD8, CD19, CD45, CD127,

CD27, CD45RA and IGM (eBioscience). Anti-mouse CD45.2 was

also used to identify mouse white blood cells (eBioscience).

Immunohistochemistry
Spleens were fixed in formaldehyde and embedded in paraffin

by standard histological protocols. They were then sectioned and

stained with H&E or immunohistochemistry was carried out with

anti-human CD3, CD20 or BCL2. Anti-p24 antibodies were used

to detect HIV. Stained sections were then visualized using an

Olympus BX-41 light microscope and images captured and

processed using SPOT imaging software. For quantification of p24

staining, ten 400X fields were counted for cells with definitive

cytoplasmic staining. These were then presented as p24+ cells/

mm2.

HIV infections
HIV strain JRCSF (CCR5-tropic) was administered to HIS

mice via i.p. injection of 2880 ng of p24 as quantified by ELISA in

a volume of 200 ml. HIV genome copy numbers in the peripheral

blood were determined using Amplicor (Roche).

Ovalbumin Immunization
Balb/c or HIS mice previously receiving high dose luciferase or

hIL-7 lentivirus were immunized with 100 ug Ovalbumin protein

(Sigma) prepared with alum prior to IP injection. Serum samples

were collected 1 week post immunization and frozen for future

analysis. Mice were boosted 2 weeks after the initial immunization

with a second injection of 100 ug of Ovalbumin in alum and

serum was collected 1 weeks later (3 Weeks from initial

immunization). Serums were serially diluted and applied to ELISA

plates coated with Ova. Detection of Ova specific antibodies was

achieved using anti-mouse IgM or IgG (Balb/C Samples) or anti-

human IgM or IgG (HIS samples) HRP-conjugated antibodies.

The absorbance at each dilution was measured and those in the

linear range were used to calculate fold differences between the

pre- and post-immunization samples.

HIV-specific Western blot
Serum collected from mice previously infected with JR-CSF 7

weeks post-challenge was analyzed using the GS HIV-1 Western

Blot system (BioRad) according to manufacturer’s instructions.

Briefly, serums were diluted and incubated with nitrocellulose

strips containing pre-blotted HIV proteins prior to washing and

enzymatic detection of bound human antibodies.

Supporting Information

Figure S1 Luciferase imaging prior to intravenous administra-

tion of lentiviral vector. Expression of luciferase was assayed using

Xenogen imaging prior to intravenous injection of Rag2-/-cc-/-

mice with lentiviral vector expressing luciferase. The same

representative mouse shown in Figure 2b is shown prior to

transduction.

Found at: doi:10.1371/journal.pone.0012009.s001 (2.29 MB TIF)

Figure S2 Lentiviral vector delivery of hIL-7 promotes homeo-

static proliferation of adoptively transferred human T cells in

Rag2-/-cc-/- mice. Rag2-/-cc-/- mice previously transduced with

luciferase or hIL-7 expressing lentivirus were injected with 26107

CFSE labeled human PBMCs. One-week post transfer, the

numbers of CD3+, CD4+ and CD8+ T cells were counted from

spleens to determine the effect of hIL-7 during adoptive transfer.

Found at: doi:10.1371/journal.pone.0012009.s002 (0.17 MB TIF)

Figure S3 Lentiviral vector delivery of hIL-7 to HIS mice

improves T cell ratios in peripheral blood. HIS mice were injected

with 16108 (low dose) or 56108 (high dose) hIL-7 or luciferase

expressing lentiviral vectors at 8 weeks of age. The ratio of CD3+
to CD19+ cells detected in peripheral blood were determined from

8 to 18 weeks of age by flow cytometry. 5–7 mice were used per

group, and the average and SEM are shown.

Found at: doi:10.1371/journal.pone.0012009.s003 (0.45 MB TIF)

Figure S4 Assessment of antigen specific humoral responses in

HIS mice expressing hIL-7. a. Wt Balb/c or HIS mice expressing

luciferase or hIL-7 were immunized with ovalbumin protein and

serums were subjected to ELISA following initial exposure

(1 week) or post-boost (3 weeks) to quantify the fold increase in

Ovalbumin specific IgM (top) or IgG (bottom) relative to pre-

immune levels for each animal. Dashed lines are drawn at the level

of no fold change. b. Serums from HIS mice expressing luciferase

or hIL-7 infected with JR-CSF HIV for 6 weeks were subjected to

western blot analysis to detect HIV specific antibody responses.

Found at: doi:10.1371/journal.pone.0012009.s004 (3.98 MB TIF)
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